Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38468535

RESUMEN

Coronavirus disease-2019 (COVID-19) is a respiratory disease in which Spike protein from SARS-CoV-2 plays a key role in transferring virus genomic code into target cells. Spike protein, which is found on the surface of the SARS-CoV-2 virus, latches onto angiotensin-converting enzyme 2 receptors (ACE2r) on target cells. The RNA genome of coronaviruses, with an average length of 29 kb, is the longest among all RNA viruses and comprises six to ten open reading frames (ORFs) responsible for encoding replicase and structural proteins for the virus. Each component of the viral genome is inserted into a helical nucleocapsid surrounded by a lipid bilayer. The Spike protein is responsible for damage to several organs and tissues, even leading to severe impairments and long-term disabilities. Spike protein could also be the cause of the long-term post-infectious conditions known as Long COVID-19, characterized by a group of unresponsive idiopathic severe neuro- and cardiovascular disorders, including strokes, cardiopathies, neuralgias, fibromyalgia, and Guillaume-Barret's like-disease. In this paper, we suggest a pervasive mechanism whereby the Spike proteins either from SARS-CoV-2 mRNA or mRNA vaccines, tend to enter the mature cells, and progenitor, multipotent, and pluripotent stem cells (SCs), altering the genome integrity. This will eventually lead to the production of newly affected clones and mature cells. The hypothesis presented in this paper proposes that the mRNA integration into DNA occurs through several components of the evolutionarily genetic mechanism such as retrotransposons and retrotransposition, LINE-1 or L1 (long interspersed element-1), and ORF-1 and 2 responsible for the generation of retrogenes. Once the integration phase is concluded, somatic cells, progenitor cells, and SCs employ different silencing mechanisms. DNA methylation, followed by histone modification, begins to generate unlimited lines of affected cells and clones that form affected tissues characterized by abnormal patterns that become targets of systemic immune cells, generating uncontrolled inflammatory conditions, as observed in both Long COVID-19 syndrome and the mRNA vaccine.

2.
Microorganisms ; 11(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36985236

RESUMEN

Chlamydia trachomatis and human papillomavirus (HPV) are the most common pathogens found in sexually transmitted infections (STIs), and both are known to increase the risk of cervical cancer (CC) and infertility. HPV is extremely common worldwide, and scientists use it to distinguish between low-risk and high-risk genotypes. In addition, HPV transmission can occur via simple contact in the genital area. From 50 to 80% of sexually active individuals become infected with both C. trachomatis and HPV viruses during their lifetime, and up to 50% become infected with an HPV oncogenic genotype. The natural history of this coinfection is strongly conditioned by the balance between the host microbiome and immune condition and the infecting agent. Though the infection often regresses, it tends to persist throughout adult life asymptomatically and silently. The partnership between HPV and C. trachomatis is basically due to their similarities: common transmission routes, reciprocal advantages, and the same risk factors. C. trachomatis is a Gram-negative bacteria, similar to HPV, and an intracellular bacterium, which shows a unique biphasic development that helps the latter continue its steady progression into the host throughout the entire life. Indeed, depending on the individual's immune condition, the C. trachomatis infection tends to migrate toward the upper genital tract and spread to the uterus, and the fallopian tubes open up a pathway to HPV invasion. In addition, most HPV and C. trachomatis infections related to the female genital tract are facilitated by the decay of the first line of defense in the vaginal environment, which is constituted by a healthy vaginal microbiome that is characterized by a net equilibrium of all its components. Thus, the aim of this paper was to highlight the complexity and fragility of the vaginal microenvironment and accentuate the fundamental role of all elements and systems involved, including the Lactobacillus strains (Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus crispatus) and the immune-endocrine system, in preserving it from oncogenic mutation. Therefore, age, diet, and genetic predisposition together with an unspecific, persistent low-grade inflammatory state were found to be implicated in a high frequency and severity grade of disease, potentially resulting in pre-cancerous and cancerous cervical lesions.

3.
Diagnostics (Basel) ; 13(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36832301

RESUMEN

Life is based on a highly specific combination of atoms, metabolism, and genetics which eventually reflects the chemistry of the Universe which is composed of hydrogen, oxygen, nitrogen, sulfur, phosphorus, and carbon. The interaction of atomic, metabolic, and genetic cycles results in the organization and de-organization of chemical information of that which we consider as living entities, including cancer cells. In order to approach the problem of the origin of cancer it is therefore reasonable to start from the assumption that the sub-molecular level, the atomic structure, should be the considered starting point on which metabolism, genetics, and external insults eventually emanate. Second, it is crucial to characterize which of the entities and parts composing human cells may live a separate life; certainly, this theoretical standpoint would consider mitochondria, an organelle of "bacteria" origin embedded in conditions favorable for the onset of both. This organelle has not only been tolerated by immunity but has also been placed as a central regulator of cell defense. Virus, bacteria, and mitochondria are also similar in the light of genetic and metabolic elements; they share not only equivalent DNA and RNA features but also many basic biological activities. Thus, it is important to finalize that once the cellular integrity has been constantly broken down, the mitochondria like any other virus or bacteria return to their original autonomy to simply survive. The Warburg's law that states the ability of cancers to ferment glucose in the presence of oxygen, indicates mitochondria respiration abnormalities may be the underlying cause of this transformation towards super cancer cells. Though genetic events play a key part in altering biochemical metabolism, inducing aerobic glycolysis, this is not enough to impair mitochondrial function since mitochondrial biogenesis and quality control are constantly upregulated in cancers. While some cancers have mutations in the nuclear-encoded mitochondrial tricarboxylic acid (TCA) cycle, enzymes that produce oncogenic metabolites, there is also a bio-physic pathway for pathogenic mitochondrial genome mutations. The atomic level of all biological activities can be considered the very beginning, marked by the electron abnormal behavior that consequently affects DNA of both cells and mitochondria. Whilst the cell's nucleus DNA after a certain number of errors and defection tends to gradually switch off, the mitochondria DNA starts adopting several escape strategies, switching-on a few important genes that belong back at their original roots as independent beings. The ability to adopt this survival trick, by becoming completely immune to current life-threatening events, is probably the beginning of a differentiation process towards a "super-power cell", the cancer cells that remind many pathogens, including virus, bacteria, and fungi. Thus, here, we present a hypothesis regarding those changes that first begin at the mitochondria atomic level to steadily involve molecular, tissue and organ levels in response to the virus or bacteria constant insults that drive a mitochondria itself to become an "immortal cancer cell". Improved insights into this interplay between these pathogens and mitochondria progression may disclose newly epistemological paradigms as well as innovative procedures in targeting cancer cell progressive invasion.

4.
Diagnostics (Basel) ; 12(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36359570

RESUMEN

Life as we know it is made of strict interaction of atom, metabolism, and genetics, made around the chemistry of the most common elements of the universe: hydrogen, oxygen, nitrogen, sulfur, phosphorus, and carbon. The interaction of atomic, metabolic, and genetic cycles results in the organization and de-organization of chemical information of what we consider living entities, including cancer cells. In order to approach the problem of the origin of cancer, it is therefore reasonable to start from the assumption that the atomic structure, metabolism, and genetics of cancer cells share a common frame with prokaryotic mitochondria, embedded in conditions favorable for the onset of both. Despite years of research, cancer in its general acceptation remains enigmatic. Despite the increasing efforts to investigate the complexity of tumorigenesis, complementing the research on genetic and biochemical changes, researchers face insurmountable limitations due to the huge presence of variabilities in cancer and metastatic behavior. The atomic level of all biological activities it seems confirmed the electron behavior, especially within the mitochondria. The electron spin may be considered a key factor in basic biological processes defining the structure, reactivity, spectroscopic, and magnetic properties of a molecule. The use of magnetic fields (MF) has allowed a better understanding of the grade of influence on different biological systems, clarifying the multiple effects on electron behavior and consequently on cellular changes. Scientific advances focused on the mechanics of the cytoskeleton and the cellular microenvironment through mechanical properties of the cell nucleus and its connection to the cytoskeleton play a major role in cancer metastasis and progression. Here, we present a hypothesis regarding the changes that take place at the atomic and metabolic levels within the human mitochondria and the modifications that probably drive it in becoming cancer cell. We propose how atomic and metabolic changes in structure and composition could be considered the unintelligible reason of many cancers' invulnerability, as it can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between this sub-molecular organized dynamic structure, nuclear mechanics, and metastatic progression may have powerful implications in cancer diagnostics and therapy disclosing innovation in targets of cancer cell invasion.

5.
Diagnostics (Basel) ; 12(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36292082

RESUMEN

Untreated chronic hepatitis B virus (HBV) infection can lead to chronic liver disease and may progress to cirrhosis or hepatocellular carcinoma (HCC). HBV infection has been prevalent in Vietnam, but there is little information available on the genotypes, sub-genotypes, and mutations of HBV in patients with HBV-related HCC confirmed by histopathological diagnosis. We studied the molecular characteristics of HBV and its genetic variants in Vietnamese HCC patients after liver tumor resection. We conducted a descriptive cross-sectional study on 107 HBV-related HCC hospitalized patients from October 2018 to April 2019. The specimens collected included EDTA anticoagulant blood and liver tissues. Extracted HBV DNA was subjected to whole genome sequencing by the Sanger method. We discovered 62 individuals (57.9%) with genotype B and 45 patients (42.1%) with genotype C, with only sub-genotypes B4 and C1. Among the mutations, the double mutation, A1762T-G1764A, had the most significant frequency (73/107 samples; 68.2%) and was higher in genotype C than in genotype B (p < 0.001). The most common genotypes found in HCC patients in this investigation were B and C, with sub-genotypes B4 and C1 for each. The prevalence of genotype B4 was greater in HBV-infected Vietnamese HCC patients.

6.
Artículo en Inglés | MEDLINE | ID: mdl-35331127

RESUMEN

The current commentary describes the possible existing link between metabolic diseases such as diabetes type 2 and the degenerative patterns of bones via the molecular mechanism that inhibits the mesenchymal stem cells' differentiation into osteoblasts and osteocytes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Mesenquimatosas , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-35162303

RESUMEN

Objectives: Quang Nam province in the Centre of Vietnam has faced an outbreak of dengue hemorrhagic fever (DHF) in 2018. Although DHF is a recurrent disease in this area, no epidemiological and microbiological reports on dengue virus serotypes have been conducted mainly due to lack of facilities for such a kind of advanced surveillance. The aim of this study was to detect different dengue virus serotypes in patients' blood samples. Design and Methods: Suspected cases living in Quang Nam province (Vietnam) and presenting clinical and hematological signs of dengue hemorrhagic fever were included in the study. The screening was performed, and the results were compared by using two methodologies: RT real-time PCR (RT-rPCR) and the Dengue NS1 rapid test. Results: From December 2018 to February 2019, looking both at RT-rPCR [+] and NS1 [+] methodologies, a total of 488 patients were screened and 336 were positive for dengue virus detection (74 children and 262 adults); 273 of these patients (81.3%) underwent viral serotype identification as follows: 12.82% (35/273) D1 serotype, 17.95% (49/273) D2, 0.37% (1/273) D3, 68.50 (187/283) D4, and 0.37% (1/273) D2+D4 serotypes. The RT-rPCR outcomes showed higher sensitivity during the first three days of infection compared to NS1 (92.3% vs. 89.7%). The NS1 increased sensitivity after the first 3 days whilst the RT-rPCR decreased. Conclusions: Advanced surveillance with dengue virus serotypes identification, if performed routinely, may help to predict and prevent further DHF epidemics based on the exposure of the different serotypes during different periods that lead to the intensification of disease severity as a consequence of antibody-dependent enhancement (ADE).


Asunto(s)
Virus del Dengue , Dengue , Adulto , Anticuerpos Antivirales , Niño , Dengue/diagnóstico , Virus del Dengue/genética , Brotes de Enfermedades , Humanos , Serogrupo , Vietnam/epidemiología
8.
Biology (Basel) ; 9(6)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560235

RESUMEN

BACKGROUND: Oral pathogens may exert the ability to trigger differently the activation of local macrophage immune responses, for instance Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans induce predominantly pro-inflammatory (M1-like phenotypes) responses, while oral commensal microbiota primarily elicits macrophage functions consistent with the anti-inflammatory (M2-like phenotypes). METHODS: In healthy individuals vs. periodontal disease patients' blood samples, the differentiation process from monocyte to M1 and M2 was conducted using two typical growth factors, the granulocyte/macrophage colony stimulating factor (GM-CSF) and the macrophage colony stimulating factor (M-CSF). RESULTS: In contrast with the current literature our outcomes showed a noticeable increase of macrophage polarization from healthy individuals vs. periodontal patients. The biological and clinical significance of these data was discussed. CONCLUSIONS: Our translational findings showed a significant variance between control versus periodontal disease groups in M1 and M2 marker expression within the second group significantly lower skews differentiation of M2-like macrophages towards an M1-like phenotype. Macrophage polarization in periodontal tissue may be responsible for the development and progression of inflammation-induced periodontal tissue damage, including alveolar bone loss, and modulating macrophage function may be a potential strategy for periodontal disease management.

9.
Biomedicines ; 8(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397555

RESUMEN

Chronic periodontitis (CP) is a complex pathology with a significant impact worldwide causing bone loss. Oral dysbiosis is a highly inflammatory condition associated to a long-term insulting infection and represents an underestimated CP key factor associated with an imbalance of pro-inflammatory and anti-inflammatory gene responses. The presence of a single nucleotide polymorphisms (SNPs) in the promoter region of interleukin 10 (IL-10) gene-1082, -819, and -592 was a possible determinant cause. This translational research aimed to provide outcomes on the role of IL-10 gene expression in bone loss diseases in patients affected by CP. Caucasian patients (n = 96) affected by CP were recruited from the Italian population. The subgingival samples were collected using the Bacterial Periodontal Assessment by Biomolecular Diagnostic® and the characterization of a set of 15 bacterial DNA responsible of periodontitis was performed by real-time multiplex PCR. In addition, two viruses, Epstein-Barr Virus (EBV) and Herpes Simplex Virus 1 (HSV-1), and a pathogenic fungi (Candida albicans) were included as a part of our panel. Our results confirmed an existing association between IL-10 gene polymorphisms and polymorphism of tumor necrosis factor alpha (TNFα), interleukin 1α-ß-RN (IL-1α-ß-RN), collagen type-l alpha (COLIA1), and vitamin D receptor (VDRs) genes in CP. Further studies are needed to improve diagnosis and endorse more effective therapeutic procedures for periodontal disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...